
DGKJ-Kurs Pädiatrische Ernährungsmedizin

Block I: 23.-26.02.2022

Block II: 23.-26.03.2022

E-Learning-Block

Mikronährstoffe

Lerneinheit I | Modul 1.2

Modul	h	Thema	Referent		
Lerneinheit	Lerneinheit I				
1.1	2	Grundkenntnisse des Energie-SW., d. physiol. Funktionen, Verdauung, Absorption u. endogenen Verwertung / Sport und Ernährung	Dr. Christian Zimmermann		
1.2	2	Makro- und Mikronährstoffe	Dr. Christian Zimmermann		
1.3	1	Prävention ernährungsbedingter Krankheiten	Prof. Dr. Anette Buyken		
1.4	1	Ballaststoffe	Prof. Dr. Anika Wagner		
Lerneinheit	II				
2.1	1	Prä- und Probiotika	Dr. Christian Zimmermann		
2.2	1	Lebensmittelkunde, functional food	Prof. Dr. Anika Wagner		
2.3	2	Lebensmittelsicherheit, Verbraucherschutz	Dr. Christian Borsch		
2.4	1	Grundlagen der Ernährungstherapie	Dr. Kathrin Sinningen		
2.5	1	Grundlagen der Ernährungswissenschaft	Prof. Dr. Anika Wagner		
Lerneinheit III					
3.1	1	Gesundheitsökonomische Aspekte	Prof. Dr. Busse und Mitarbeiter/+innen (Anfrage)		
3.2	2	Berücksichtigung der Behandlungsform (z.B. Akut-klinik; Reha-, Pflegeeinrichtung, ambulant)	Dr. Burkhard Lawrenz		
3.3	1	Gemeinschaftsverpflegung	Prof. Dr. Ulrike Arens-Azevedo		
3.4	2	Organisation und Qualitätssicherung der Ernährungsmedizin	Dr. Thomas Kauth		

Mikronährstoffe

Referent: Dr. Christian Zimmermann

DGKJ-Kurs - Bochum, 23.02.2022

Erklärung von Interessen

Hiermit erkläre ich, dass der Inhalt meines Vortrags/Seminars produkt- und dienstleistungsneutral gestaltet ist und kein Interessenkonflikt hinsichtlich Anstellungsverhältnis, Berater-bzw. Gutachtertätigkeit, Besitz von Geschäftsanteilen, Aktien oder Fonds, Patenten, Urheberrechten, Verkaufslizenzen, Honorarzahlungen, Finanzierung wissenschaftlicher Untersuchungen sowie anderer finanzieller Beziehungen besteht.

Gießen, 15.01.2022

Christian Zimmermann

Lerneinheit I | Modul 1.2

Gliederung

- Allgemeines zu Mikronährstoffen
- Jod
- Eisen
- Vitamin D

Mikronährstoffe

- Liefern keine Energie
- Vitamine und Mineralstoffe
- An zahlreichen Stoffwechselvorgängen beteiligt
 - Kofaktoren
 - Bildung von Koenzymen
 - Bestanteile von Hormonen
 - Elektrolyt- und Wasserhaushalt
 - Aufbau und Funktion von Knochen, Muskeln, ...
 - ...

Versorgung

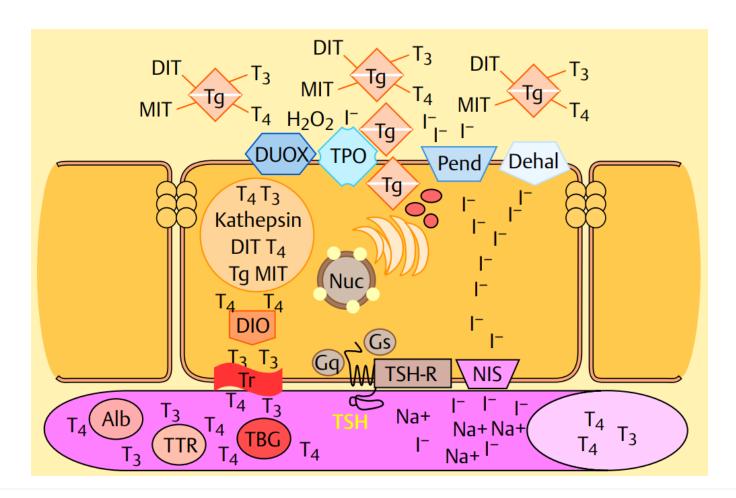
Trijodthyronin

Jodid Jod

Thyroid Stimulating Hormone

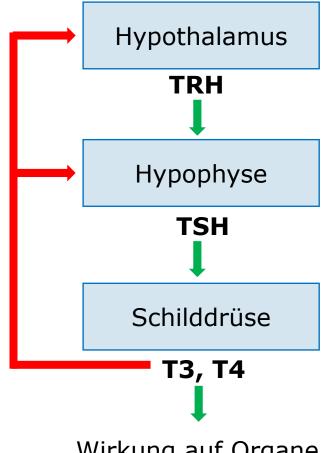
Zufuhrempfehlung Status Thyroxin

Lerneinheit I | Modul 1.2


• Essentielles Spurenelement

- Absorption als Jodid im oberen Dünndarm über Natriumjodidsymporter (NIS) (Absorptionsrate > 90%)
- Körperbestand (Erwachsene): 10-20 mg, davon 70-80% in Schilddrüse
- Hohe Bedeutung bei Produktion von Schilddrüsenhormonen

Lerneinheit I | Modul 1.2


Biosynthese Schilddrüsenhormone

Biesalski et al. (2018) Ernährungsmedizin, Thieme

Regulation Schilddrüsenhormonsynthese

Wirkung auf Organe

Funktionen T3/T4

- Liganden für Transkriptionsfaktoren
- Erhöhung Wärmeproduktion und Grundumsatz
- Stimulation Glucosestoffwechsel
- Unterstützung Lipolyse
- Erhöhung Kontraktionskraft Herzmuskel und Herzzeitvolumen
- Reifung und Entwicklung von u.a. Nervensystem, Knochen

Empfohlene Zufuhr (DACH)

Alter	Jod (D, A) (μg/d)	Jod (C) (µg/d)	
Säuglinge			
0 bis < 4 Monate ^a	40	50	
4 bis < 12 Monate	80	50	
Kinder			
1 bis < 4 Jahre	100	90	
4 bis < 7 Jahre	120	90	
7 bis < 10 Jahre	140	120	
10 bis < 13 Jahre	180	120	
13 bis < 15 Jahre	200	150	
Jugendliche und Erwachsene			
15 bis < 51 Jahre	200	150	
≥ 51 Jahre	180	150	
Schwangere	230	200	
Stillende	260	200	

^a Schätzwert

https://www.dge.de/wissenschaft/referenzwerte/jod/

Tolerable Upper Level (EFSA)

Alter	Upper Level Jod (µg/d)
1 bis 3 Jahre	200
4 bis 6 Jahre	250
7 bis 10 Jahre	300
11 bis 14 Jahre	450
15 bis 17 Jahre	500
≥ 18 Jahre	600*
Schwangere	600*
Stillende	600*

^{*}In Deutschland wurde aufgrund des langjährigen Jodmangels und des dadurch bedingten erhöhten gesundheitlichen Risikos bei unerkannten funktionellen Autonomien der Schilddrüse (insbesondere bei älteren Personen, die lange einem Jodmangel ausgesetzt waren) für Erwachsene ein UL von 500 µg/Tag festgelegt (D-A-CH, 2015).

Gehalte in Lebensmitteln

• In vielen Lebensmitteln nur in Spuren

Lebensmittel	Jodgehalt
Schellfisch	100-300 μg / 100 g
Hering, Thunfisch	100-250 μg / 100 g
Kabeljau, Scholle	50-200 μg / 100 g
Milch und Milchprodukte	10 µg / 100 g
Hühnerei	10-30 μg / Eidotter
Meeresalgen (getrocknet)	0,5-1.100 mg / 100 g
Jodiertes Speisesalz	150-250 mg / 100 g

15

Jodstatus

Indicator Concentration cut-off values for public health significance				
	Concentration	Iodine intake	Iodine status	
	<20 µg/L	Insufficient	Severe deficiency	
Iodine deficiency measured by	20-49 μg/L	Insufficient	Moderate deficiency	
modian urinary iodino	50-99 μg/L	Insufficient	Mild deficiency	
1 1:11 /5 6 38	100-199 ug/l	Adequate	Adequate iodine nutrition	7
_	<1F0 ··· ~ //		dualwerte!	e-induced hyperthyroidism or autoimmune
podific deficiency friedsdred by	<150 µg/L	Insufficient		
median urinary iodine concentration (µg/L) in	150-249 μg/L	Adequate		^a Applies to adults, but not to pregnant
pregnant women	250-499 μg/L	Above requirements		and lactating women; b The term
	≥500 µg/L	Excessive ^b		"excessive" means "in excess of the amount required to prevent and control
Iodine deficiency measured by	Concentration	Iodine intake	Iodine status	iodine deficiency" ^c Although lactating women have the same requirement as
	<100 µg/L	Insufficient		pregnant women, the median urinary iodine concentration is lower because
lactating women ^c and children aged <2 years	≥100 µg/L	Adequate		iodine is excreted in breast milk.

https://www.who.int/data/nutrition/nlis/info/iodine-deficiency (27.12.2021)

Folgen von Jodmangel

- In Schwangerschaft, Säuglings- und Kindesalter:
 - · Körperliche und neurologische Entwicklungsstörungen
 - Feinmotorische Beeinträchtigungen
 - Verminderte kognitive Leistungsfähigkeit
 - U.a.
- Langfristig:
 - Strumen
 - Schilddrüsenknoten
 - Funktionsstörungen Schilddrüse

Stellungnahme Nr. 005/2021 des BfR vom 9. Februar 2021 https://www.bfr.bund.de/cm/343/ruecklaeufige-jodzufuhr-in-der-bevoelkerung-modellszenarien-zur-verbesserung-der-jodaufnahme.pdf

- Natürliche Jodgehalte der Lebensmittel reichen derzeit nicht aus, um in Deutschland ausreichende Jodzufuhr sicherzustellen
- Seit 1980er Jahre durch Jodierung von Speisesalz und Anreicherung von Futtermittel Verbesserung der Jodversorgung, aber weiterhin nicht optimal
- Aktuelle Daten zeigen Rückläufige Jodzufuhr in der Bevölkerung
- Rückläufiger Einsatz von jodiertem Salz bei Produktion verarbeiteter Lebensmittel
- Strategien zur Reduktion von Zucker, Fett und Salz in Lebensmitteln führt zu weiterem Rückgang der Jodzufuhr

Jodversorgung

Trendvergleich KIGGS Basis und KIGGS Welle 2

Hey und Tamm. (2019) Abschlussbericht: Monitoring der Jod- und Natriumversorgung bei Kindern und Jugendlichen im Rahmen der Studie des Robert Koch-Instituts zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS Welle 2)

DGKJ-Kurs
Pädiatrische Ernährungsmedizin 2022
i dalati iselie Elilain aligsilicaleni Esee.

Miter in Jahren / Welle (0,2)	Jod im Urin [µg/l]	Geschätzte mediane Tagesjodausscheidung (µg/d)	Geschätzte Jodtages zufuhr [µg/d]*	
Jungen				
3-6 Jahre***				
0	127,6 (66,3-191,7)	61,0 (35,9-97,5)	71,8 (42,3-114,7)	
2	105,3 (69,8-148,5)	59,2 (37,5-85,2)	69,6 (44,1-100,3)	
7-10 Jahre***				
0	131,8 (77,7-188,9)	83,4 (52,9-125,7)	98,1 (62,3-147,9)	
2	95,2 (62,2-134,5)	64,6 (45,2-98,7)	75,9 (53,3-116,1)	
11-13 Jahre***				
0	127,6 (79,1-181,7)	98,0 (60,4-150,3)	115,3 (71,0-176,9)	
2	91,4 (64,7-123,1)	81,7 (55,7-119,9)	96,1 (65,5-141,1)	
14-17 Jahre***				
0	117,6 (69,1-171,8)	116,6 (71,6-180,0)	137,2 (84,3-211,8)	
2	83,8 (57,1-112,9)	95,2 (64,7-126,9)	112,0 (76,1-149,3)	
Gesamt ♂***				
0	126,1 (72,0-183,2)	88,3 (51,4-139,8)	103,9 (60,4-164,5)	
2	92,6 (62,2-128,2)	75,0 (49,9-108,9)	88,2 (58,7-128,2)	
	1	Mädchen		
3-6 Jahre***				
0	109,0 (46,3-170,3)	54,2 (30,2-85,5)	63,8 (35,5-100,6)	
2	88,8 (57,1-128,2)	53,1 (33,9-68,9)	62,5 (39,9-81,0)	
7-10 Jahre***				
0	114,7 (60,6-168,9)	69,8 (42,6-105,3)	82,1 (50,1-123,9)	
2	87,6 (55,8-128,2)	64,1 (42,4-93,5)	75,5 (49,9-110,0)	
11-13 Jahre***				
0	104,7 (59,1-157,5)	77,6 (49,4-121,2)	91,3 (58,1-142,6)	
2	90,1 (55,8-121,8)	71,5 (45,2-105,2)	84,2 (53,2-123,8)	
14-17 Jahre***				
0	103,3 (52,0-158,9)	96,4 (56,9-153,8)	113,4 (67,0-180,9)	
2	78,7 (48,2-114,2)	80,2 (56,6-119,3)	94,4 (66,6-140,3)	
Gesamt ♀***				
0	107,6 (54,8-163,2)	73,1 (42,5-115,8)	86,0 (50,0-136,3)	
2	86,3 (54,6-123,1)	65,2 (43,7-97,8)	76,7 (51,4-115,1)	
	G	esamt***		
0	117,6 (64,8-174,6)	80,8 (47,2-128,7)	95,0 (55,6-151,4)	
2	88,8 (58,4-125,6)	70,5 (46,6-104,6)	83,0 (54,9-123,1)	

Stellungnahme Nr. 005/2021 des BfR (9. Februar 2021)

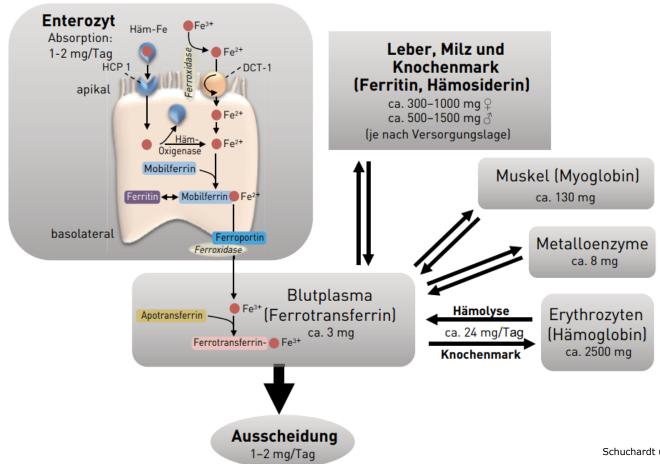
https://www.bfr.bund.de/cm/343/ruecklaeufiqe-jodzufuhr-in-der-bevoelkerung-modellszenarien-zur-verbesserung-der-jodaufnahme.pdf

Modellrechnung für Jugendliche und Erwachsene:

Kann eine Erhöhung der gesetzlichen Höchstmenge von Jod in Speisesalz von 25 auf 30 mg/kg das Auftreten des Risikos einer unzureichenden Jodaufnahme reduzieren?

(Unter Berücksichtigung einer erfolgreichen zehnprozentigen Reduktion des Salzverzehrs und der Bedingung, dass UL nicht Überschritten wird)

- > Erhöht die mediane Jodzufuhr bevölkerungsweit etwas
- ➤ Insbesondere bei Frauen im gebärfähigem Alter senkt dies das Auftreten des Risikos für eine unzureichende Jodaufnahme nur geringfügig
- ➤ Eine alleinige Erhöhung des Jodgehaltes im Salz um 5 mg/kg ist ohne Steigerung des Verwendungsgrades von Jodsalz zur Herstellung industriell und handwerklich hergestellter Lebensmittel daher nicht sachgerecht



Allgemeines

- Quantitativ bedeutendste Spurenelement
- Körperbestand (Erwachsene): 3-5 g
- Absorption als Fe²⁺ im oberen Dünndarm
- Absorptionsrate aus tierischen Lebensmitteln 10-20 %, aus pflanzlichen Lebensmitteln 1-5 %

Eisenabsorption und -stoffwechsel

Schuchardt und Hahn (2010) Ernährungsumschau

Einfluss auf Bioverfügbarkeit

Hemmend	Steigernd
Phytinsäure	Vitamin C
Oxalsäure	Fruchtsäuren (Citrat, Malat, Lactat)
Lignine	Methionin, Cystein
Tannine und andere Polyphenole	
Sojaproteine	
Ballaststoffe	
Tetracycline, Paracetamol, Salicylate	
zweiwertige Kationen (z. B. Ca, Zn, Co, Cd, Cu, Mn)	

Empfohlene Zufuhr (DACH)

Alter	M (mg/d)	W a (mg/d)
Säuglinge ^b		
0 bis < 4 Monate ^{c,d}	0,	5
4 bis < 12 Monate	8	3
Kinder		
1 bis < 7 Jahre	8	
7 bis < 10 Jahre	10	
10 bis < 15 Jahre	12	15
Jugendliche und Erwachsene		
15 bis < 19 Jahre	12	15
19 bis < 51 Jahre	10	15
≥ 51 Jahre	1	0
Schwangere		30
Stillende ^e		20

^anichtmenstruierende Frauen, die nicht schwanger sind oder nicht stillen: 10 mg/Tag

bausgenommen Unreifgeborene

^cHierbei handelt es sich um einen Schätzwert.

^dEin Eisenbedarf besteht infolge der dem Neugeborenen von der Plazenta als Hb-Eisen mitgegebenen Eisenmenge erst ab dem 4. Monat.

^eDiese Angabe gilt für stillende und nicht stillende Frauen nach der Geburt zum Ausgleich der Verluste während der Schwangerschaft.

https://www.dge.de/wissenschaft/referenzwerte/eisen/

Mögliche Ursachen für unzureichende Eisenversorgung

erhöhter Eisenbedarf

- Wachstumsphase (z. B. 1.–2. Lebensjahr, Pubertät)
- Schwangerschaft & Stillperiode
- längerer Aufenthalt in großen Höhen (verstärkte Bildung von Erythrozyten)
- Leistungssport (v. a. Ausdauersport)

Absorptionsstörungen

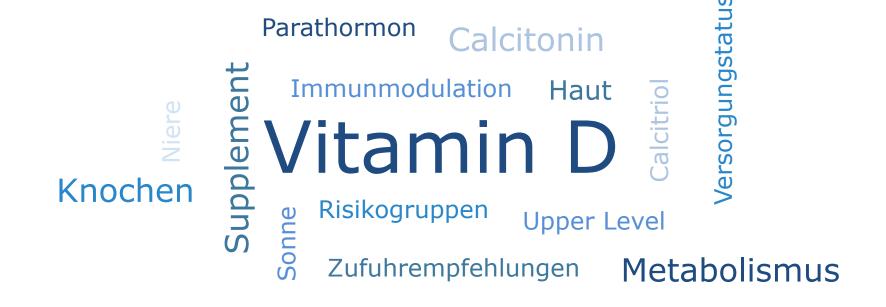
- entzündliche Magen-Darm-Erkrankungen, Zöliakie
- anhaltende Diarrhö
- nach Magen- und Dünndarmresektion
- Nebenwirkungen von Medikamenten

Blutverluste

- gastrointestinale Blutungen (z. B. Entzündungen, Tumoren, Parasiten)
- urogenitale Blutungen (z. B. Menstruation, Geburt, Tumoren)
- häufiges Blutspenden (2- bis 4-mal im Jahr)
- Operation, Unfälle

ungenügende alimentäre Zufuhr

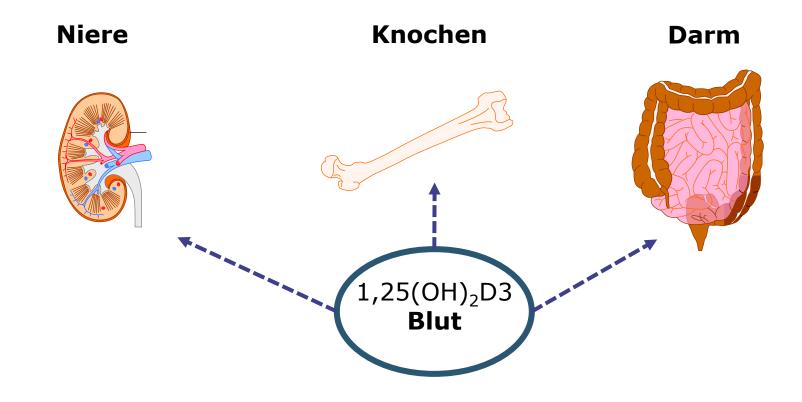
- einseitige Ernährung, generelle Mangelernährung
- fleischarme Kost, vegane Ernährungsweise


Schuchardt und Hahn (2010) Ernährungsumschau

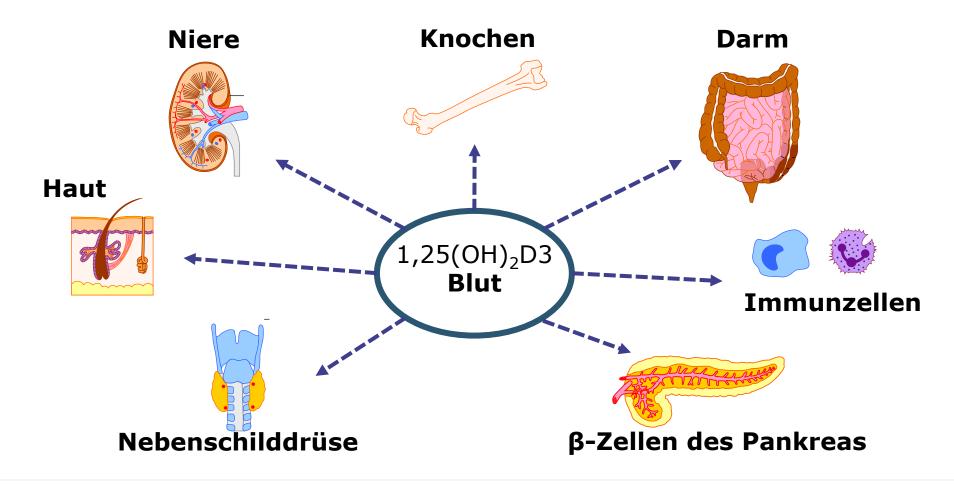
Eisenmangel bei Säuglingen

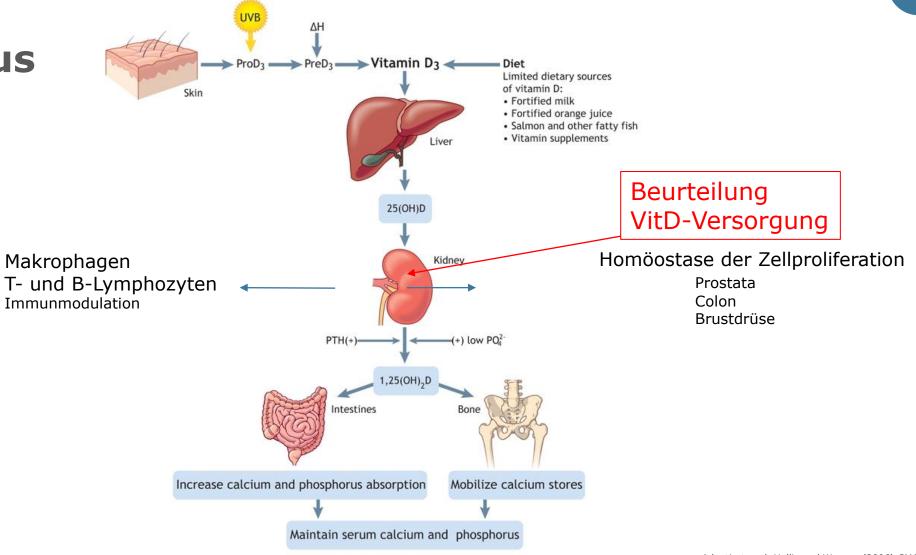
- Eisengehalt von Muttermilch niedrig
- Säuglinge müssen zur Vermeidung eines Eisenmangels auf die angeborenen Eisenspeicher zugreifen
- Im Alter von 4–6 Monaten sind Eisenspeicher aufgebraucht und Versorgung über andere Quellen nötig
- Einführung eisenreicher Breimahlzeiten spätestens zu Beginn des 7. Lebensmonats sehr wichtig

Allgemeines

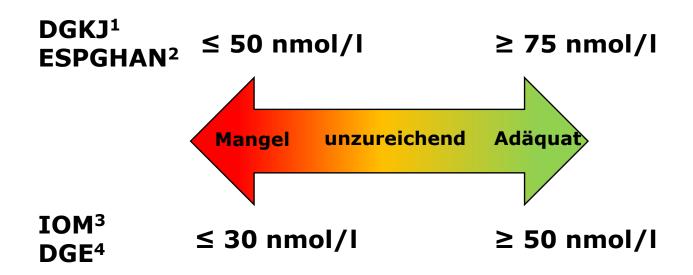

- Kann unter UV-Strahlung in Haut von Mensch synthetisiert werden
 → im eigentlichen Sinne kein Vitamin
- Vitamin D3 (Cholecalciferol)
- Vitamin D2 (Ergocalciferol)

Jarvorsky et al. (2006) Practical Gastroenterology


Funktionen im Organismus – klassische Funktionen



Funktionen im Organismus – "neue" Zielorgane


Metabolismus

Adaptiert nach Hollis und Wagner (2006) CMAJ

25-OH-D Serumwerte und Versorgungsstatus

¹Deutsche Gesellschaft für Kinderheilkunde und Jugendmedizin 2011

²European Society for Pediatric Gastroenterology, Hepatology and Nutrition 2013

³Institute of Medicine (USA) 2011

⁴Deutsche Gesellschaft für Ernährung 2013

Empfohlene Zufuhr (DACH)

	Vitamin D a	
Alter	μg/d	IE
Säuglinge		
0 bis < 12 Monate ^b	10	400
Kinder		
1 bis < 15 Jahre ^c	20	800
Jugendliche und Erwachsene		
≥ 15 Jahre ^c	20	800
Schwangere ^c	20	800
Stillende ^c	20	800

https://www.dge.de/wissenschaft/referenzwerte/vitamin-d/

c Die Vitamin-D-Zufuhr über die Ernährung mit den üblichen Lebensmitteln (1 bis 2 μg pro Tag bei Kindern, 2 bis 4 μg pro Tag bei Jugendlichen und Erwachsenen) reicht nicht aus, um die gewünschte Versorgung (25(OH)D-Serumkonzentration von mindestens 50 nmol/l bei fehlender endogener Synthese sicherzustellen. Hierfür werden 20 μg/Tag benötigt. D. h., die Versorgung muss zusätzlich zur Zufuhr über die Ernährung über die endogene Synthese und/oder über die Einnahme eines Vitamin-D-Präparats sichergestellt werden. Bei häufiger Sonnenbestrahlung kann die gewünschte Vitamin-D-Versorgung ohne die Einnahme eines Vitamin-D-Präparats erreicht werden.

^a bei fehlender endogener Synthese

b Der Schätzwert wird durch Gabe einer Vitamin-D-Tablette zur Rachitisprophylaxe ab der 1. Lebenswoche bis zum Ende des 1. Lebensjahres bei gestillten und nicht gestillten Säuglingen erreicht. Die Gabe erfolgt unabhängig von der endogenen Vitamin-D-Synthese und der Vitamin-D-Zufuhr durch Frauenmilch bzw. Säuglingsmilchnahrungen. Die Prophylaxe sollte im 2. Lebensjahr in den Wintermonaten weiter durchgeführt werden (Deutsche Gesellschaft für Kinder- und Jugendmedizin).

Einflussfaktoren auf Eigensynthese

- Geographische Lage
- Jahreszeit und Tageszeit
- Körperbedeckung
- Sonnenschutzcreme
- Hautfarbe

Tolerable Upper Level (EFSA)

Alter	Upper Level Vitamin D		
	IE	μg/d	
0 bis 6 Monate	1000	25	
6 bis 12 Monate	1400	35	
1 bis 10 Jahre	2000	50	
11 bis 17 Jahre	4000	100	
≥ 18 Jahre	4000	100	
Schwangere	4000	100	
Stillende	4000	100	

Gehalte in Lebensmitteln

Lebensmittel	μg/100g
Hering	25
Lachs	16
Sardine	11
Hühnereigelb	5,6
Thunfisch	4,5
Makrele	4,0
Avocado	3,4
Hühnervollei	2,9
Pfifferlinge	2,1
Champignons	1,9
Hühnerleber	1,3
Kabeljau	1,3
Kalbsleber	0,3

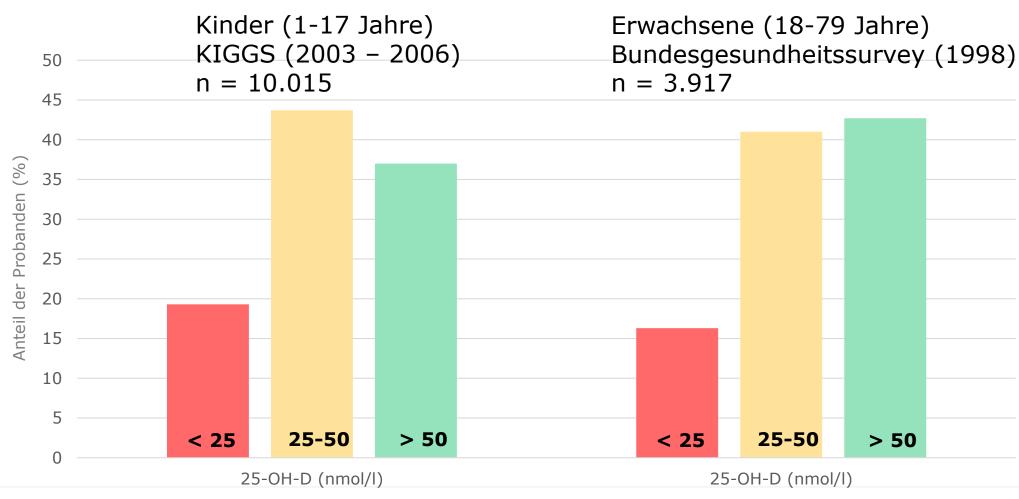
Tierische Lebensmittel: v.a. Vitamin D3 (Cholecalciferol) Pflanzliche Lebensmittel: v.a. Vitamin D2 (Ergocalciferol)

Adaptiert nach Elmadfa und Leitzmann (2015) Ernährung des Menschen, UTB

Gehalte in Lebensmitteln

Ungefähre Aufnahme von 800 IE Vitamin D über herkömmliche Lebensmittel:

- 80 g Hering
- 125 g Lachs
- 500 g Makrele
- 445 g Thunfisch
- 10 Eier
- 1000 g Champignons


Versorgung

- Stark abhängig von Jahreszeiten und Sonnenschutz
- Hohes Risiko für ungenügende Versorgung im Frühjahr und Winter
- Laut KIGGS-Studie (2007, Robert-Koch-Institut) und DONALD-Studie (2008, FKE Dortmund) erreichen Kinder und Jugendliche weder über Ernährung noch über Hautsynthese die Zufuhrempfehlungen
- 15 17 % aller Kinder Werte < 25 nmol/l
- 45 % aller Kinder über 3 Jahre Werte 25 50 nmol/l

39

Versorgung der deutschen Bevölkerung

aus DGE Stellungnahme "Vitamin D und Prävention ausgewählter chronischer Krankheiten" (2011)

Risikogruppen

- Schwangere
- Gestillte Säuglinge ohne Vitamin D Prophylaxe
- Ältere Menschen
- Personen mit dunkler Hautfarbe
- Tragen von stark bedeckender Kleidung
- Nutzung von UV-Schutzmitteln
- Wetter- und Umweltbedingungen (Jahreszeit, Smog)
- Seltener Aufenthalt im Freien
- ...

Zusammenfassung

Jod

- Synthese von Schilddrüsenhormonen
- Natürliche Jodgehalte der meisten Lebensmittel in Deutschland nicht ausreichend für adäquate Versorgung
- Strategien zur Verbesserung der Jodversorgung

Eisen

- Unterschiede in Bioverfügbarkeit
- Verschiedene Ursachen für unzureichende Versorgung
- Einführung von eisenreichen Lebensmitteln mit Beikost

Vitamin D

- Vielfältige Funktionen im Organismus
- Risiko für mangelnde Versorgung
- Versorgung Abhängig von Eigensynthese und Zufuhr

